bayesbay.prior.UniformPrior
- class bayesbay.prior.UniformPrior(name, vmin, vmax, perturb_std, perturb_std_birth=None, position=None)
Class for defining the prior probability of a free parameter distributed according to a uniform probability distribution
- Parameters:
name (str) – name of the parameter, for display and storing purposes
vmin (Union[Number, np.ndarray]) – the lower bound for this parameter. This can either be a scalar or an array if the defined probability distribution is a function of
position
in the discretization domainvmax (Union[Number, np.ndarray]) – the upper bound for this parameter. This can either be a scalar or an array if the defined probability distribution is a function of
position
in the discretization domainperturb_std (Union[Number, np.ndarray]) – standard deviation of the Gaussians used to randomly perturb the parameter. This can either be a scalar or an array if the defined probability distribution is a function of
position
in the discretization domainposition (np.ndarray, optional) – position in the discretization domain, used to define a position-dependent probability distribution. None by default
Reference Details
- name
- add_hyper_params(hyper_params)
Sets the attributes from the given dict and checks for errors
- Parameters:
hyper_params (Dict[str, Union[Number, np.ndarray]]) – dictionary of attributes to be set
- get_delta(position=None)
get the range \(\Delta v = v_{max} - v_{min}\), which may be dependent on the specified position in the discretization domain
- Parameters:
position (Union[Number, np.ndarray], optional) – the position in the discretization domain at which the uniform distribution range will be returned. None by default
- Returns:
the range \(\Delta v = v_{max} - v_{min}\)
- Return type:
Number
- get_hyper_param(hyper_param, position=None)
Retrieves the value corresponding to the specified attribute, which may be a function of position
- Parameters:
hyper_param (str) – the name of the attribute
position (Union[np.ndarray, Number], optional) – the position (in the discretization domain) associated with the value, None by default
- Returns:
value corresponding to the specified attribute
- Return type:
Union[Number, np.ndarray]
- get_perturb_std(position=None)
get the standard deviation of the Gaussian used to perturb the parameter, which may be dependent on the position in the discretization domain
- Parameters:
position (Union[Number, np.ndarray], optional) – the position in the discretization domain at which the standard deviation of the Gaussian used to perturb the parameter is returned. Default is None
- Returns:
standard deviation of the Gaussian used to perturb the parameter, possibly at the specified position
- Return type:
Number
- get_perturb_std_birth(position=None)
get the standard deviation of the Gaussian used to perturb the parameter at birth, which may be dependent on the position in the discretization domain
- Parameters:
position (Union[Number, np.ndarray], optional) – the position in the discretization domain at which the standard deviation of the Gaussian used to perturb the parameter at birth is returned. Default is None
- Returns:
standard deviation of the Gaussian used to perturb the parameter at birth, possibly at the specified position
- Return type:
Number
- get_vmin_vmax(position=None)
get the lower and upper bounds of the parameter, which may be dependent on position in the discretization domain
- Parameters:
position (Union[Number, np.ndarray], optional) – the position in the discretization domain at which the the lower and upper bounds of the parameter will be returned. None by default
- Returns:
the lower (
vmin
) and upper (vmax
)- Return type:
Tuple[Number, Number]
- has_hyper_param(hyper_param)
Whether or not the
Prior
instance has the specified attribute- Parameters:
hyper_param (str) – the name of the attribute
- initialize(positions=None)
initializes the values of this (possibly position-dependent) parameter
This is the vectorized version of the method
sample()
.- Parameters:
positions (np.ndarray, optional) – the position (in the discretization domain) associated with the value, None by default
- Returns:
an array of values or one value corresponding to the prior probability (at the given positions)
- Return type:
np.ndarray
- log_prior(value, position=None)
calculates the log of the prior probability density for the given value, which may be dependent on the position in the discretization domain
- Parameters:
value (Number) – the value to calculate the probability density for
position (Union[Number, np.ndarray], optional) – the position in the discretization domain at which the prior probability of the parameter
value
is to be retrieved
- Returns:
the log of the prior probability \(p(v) = \frac{1}{\Delta v}\), where \(v\) denotes the
value
passed by the user and \(\Delta v = v_{max} - v_{min}\) the range within which the uniform parameter is allowed to vary. This may be dependent on position in the discretization domain- Return type:
Number
- perturb_value(value, position=None, is_birth=False)
perturbs the given value, in a way that may depend on the position in the discretization domain and calculates the log of the corresponding partial acceptance probability,
\[\begin{split}\underbrace{\alpha_{p}}_{\begin{array}{c} \text{Partial} \\ \text{acceptance} \\ \text{probability} \end{array}} = \underbrace{\frac{p\left({\bf m'}\right)}{p\left({\bf m}\right)}}_{\text{Prior ratio}} \underbrace{\frac{q\left({\bf m} \mid {\bf m'}\right)}{q\left({\bf m'} \mid {\bf m}\right)}}_{\text{Proposal ratio}} \underbrace{\lvert \mathbf{J} \rvert}_{\begin{array}{c} \text{Jacobian} \\ \text{determinant} \end{array}},\end{split}\]which in this case equals zero. In the above equation, \(\bf m'\) denotes the perturbed model as obtained through a random deviate from a normal distribution \(\mathcal{N}(v, \sigma)\), where \(v\) denotes the original
value
and \(\sigma\) the standard deviation of the Gaussian used for the perturbation. \(\sigma\) may be dependent on the specified position (UniformPrior.perturb_std
).- Parameters:
value (Number) – the current value to be perturbed from
position (Union[Number, np.ndarray], optional) – the position in the discretization domain at which the parameter
value
is to be perturbedis_birth (bool, optional) – whether the perturbation is a birth or not, False by default
- Returns:
the perturbed value and \(\alpha_{p} = \log( \frac{p({\bf m'})}{p({\bf m})} \frac{q\left({\bf m} \mid {\bf m'}\right)}{q\left({\bf m'} \mid {\bf m}\right)} \lvert \mathbf{J} \rvert) = 0\)
- Return type:
Tuple[Number, Number]
- sample(position=None)
sample a new value from the prior
Paramters
- positionUnion[np.ndarray, Number], optional
the position (in the discretization domain) associated with the value, None by default
- returns:
a value corresponding to the prior probability (at the given position)
- rtype:
Number
- set_custom_initialize(initialize_func)
sets a custom initialization function
- Parameters:
initialize_func (Callable[["Prior", np.ndarray], np.ndarray]) – The function to use for initialization. This function should take a
Prior
instance and optionally an array of positions as input arguments, and produce an array of values as output.
Examples
def my_init( param: bb.prior.Prior, position: np.ndarray ) -> np.ndarray: print("This is my custom init!") return np.ones(len(position)) my_param.set_custom_initialize(my_init)